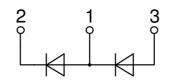
MDNA25P2200TG


			tentative
High Voltage Standard Rectifier Module	V_{RRM}	= 23	x 2200 V
5 5	I _{FAV}	=	25 A
	V_{F}	=	1.13 V

Phase leg

Part number **MDNA25P2200TG**

Backside: isolated **E**72873

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- · Very low leakage current

Applications:

- Diode for main rectification
- For single and three phase
- bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- · Field supply for DC motors

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Height: 30 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Terms Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

20160425

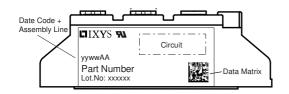
LIXYS

MDNA25P2200TG

tentative

Rectifier	•				Rating	s	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	king voltage	$T_{VJ} = 25^{\circ}C$			2300	V
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			2200	V
I _R	reverse current	$V_{R} = 2200 V$	$T_{VJ} = 25^{\circ}C$			20	μA
		$V_{R} = 2200 V$	$T_{VJ} = 150^{\circ}C$			1.5	mA
VF	forward voltage drop	I _F = 25 A	$T_{vJ} = 25^{\circ}C$			1.17	V
		I _F = 50 A				1.37	V
		I _F = 25 A	T _{vJ} = 125 °C			1.13	V
		$I_{F} = 50 \text{ A}$				14.00	V
FAV	average forward current	T _c = 100°C	T _{vJ} = 150°C			25	Α
		rectangular d = 0.5					
V _{F0}	threshold voltage		T _{vj} = 150°C			0.85	V
r _F	slope resistance } for power	loss calculation only				11.1	mΩ
R _{thJC}	thermal resistance junction to ca	ase				1.1	K/W
R _{thCH}	thermal resistance case to heats	sink			0.20		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			110	W
	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{vJ} = 45^{\circ}C$			320	Α
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			345	Α
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			270	Α
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			295	Α
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			510	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			495	A²s
		t = 10 ms; (50 Hz), sine	$T_{vJ} = 150$ °C			365	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			360	A²s
C	junction capacitance	V _R = 400 V; f = 1 MHz	$T_{vJ} = 25^{\circ}C$		11		pF

IXYS reserves the right to change limits, conditions and dimensions.


20160425

XYS

MDNA25P2200TG

tentative

Package TO-240AA				Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
	RMS current	per terminal					200	Α
T _{vj}	virtual junction temperature				-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		125	°C
Weight						76		g
M _D	mounting torque				2.5		4	Nm
M _T	terminal torque				2.5		4	Nm
d _{Spp/App}	creepage distance on surface striking distance throu		terminal to terminal	13.0	9.7			mm
d _{Spb/Apb}	creepage distance on surfac	e Siriking distance through an	terminal to backside	16.0	16.0			mm
V	isolation voltage	t = 1 second			4800			V
····-	t = 1 min		50/60 Hz, RMS; liso∟ ≤ 1 mA		4000			V

Part description

M = Module

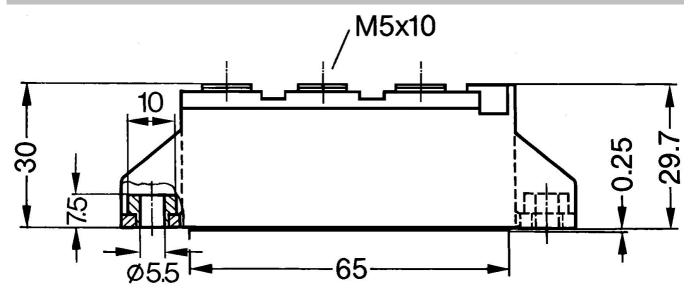
D = Diode N = High Voltage Standard Rectifier

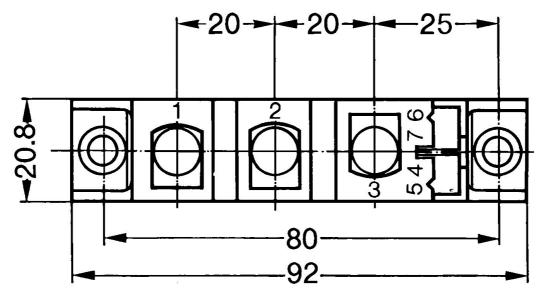
N = High Voltage Standar A = (>= 2000V) 25 = Current Rating [A] P = Phase leg 2200 = Reverse Voltage [V] TG = TO-240AA

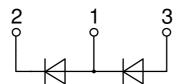
[Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
	Standard	MDNA25P2200TG	MDNA25P2200TG	Box	36	

Equiva	alent Circuits for	Simulation	* on die level	T _{vj} = 150 °C
)R	Rectifier		
$V_{0 max}$	threshold voltage	0.85		V
$\mathbf{R}_{0 \text{ max}}$	slope resistance *	9.9		mΩ

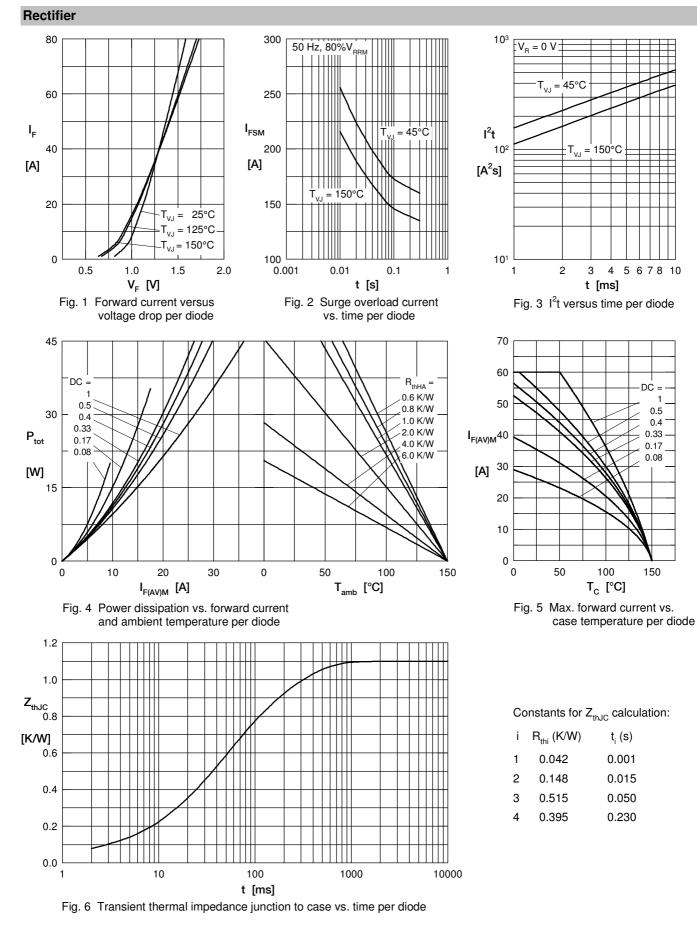
IXYS reserves the right to change limits, conditions and dimensions.

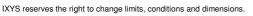

20160425




MDNA25P2200TG

tentative





MDNA25P2200TG

tentative

20160425

Data according to IEC 60747and per semiconductor unless otherwise specified